Role of sodium channels in the spontaneous excitability of early embryonic cardiomyocytes.
نویسندگان
چکیده
Sodium channels play an important role in action potentials. Moreover, some evidences recently suggested that sodium channels were responsible for murine sinoatrial node pacemaking. The aim of this study was to investigate the role of sodium channels in pacemaking in embryonic cardiomyocytes in early development stage (EDS). Whole-cell patch-clamp technique was employed to record sodium current of murine early embryonic cardiomyocytes. Current clamp technique was used to record the effect of 0.1, 1 and 10 μM tetrodotoxin (TTX) on embryonic cardiomyocytes pacemaking. Electro- physiology properties of sodium channels in embryonic cardiomyocytes corresponded to Nav1.5, and the IC₅₀ of TTX was 5.24 μM. TTX at 0.1 μM concentration had no effects on the pacemaking. TTX at 1 μM concentration, however, dramatically slowed the spontaneous beating rate from 73.975 ± 10.478 to 50.268 ± 10.476 cycle/min (P < 0.05), and the maximum upstroke velocity (dV/dtmax) of phase 4 from 0.074 ± 0.006 to 0.046 ± 0.007 V/s (P < 0.01). Furthermore, 1 μM TTX reduced the dV/dtmax of phase 0 from 16.405 ± 0.056 to 12.801 ± 0.084 V/s (P < 0.01), and increased the period of phase 4 from 710.342 ± 110.983 to 1320.618 ± 250.483 ms (P < 0.05). TTX at 1 μM also had some effects on the peak of phase 0 decreasing it from 40.621 ± 3.012 to 37.407 ± 2.749 mV (P < 0.05). But TTX at 1 μM had no effects on the period of phase 0. In some cells (9/13), TTX at 10 μM caused complete cessation of spontaneous action potentials. Our results suggested that the main expression subtype of sodium channels was Nav1.5 of early embryonic cardiomyocytes. And TTX-resistant sodium channels contributed to the initiation of action potentials of early embryonic cardiomyocytes, while TTX-sensitive sodium channels were not involved in initiation of action potentials.
منابع مشابه
P 46: The Role of Kv7-Channels in the Pathophysiology of Multiple Sclerosis
Multiple sclerosis is an autoimmune CNS-disease characterized by inflammatory neurodegenerative events occurring with de- and remyelination. Recent evidence show that demyelinated neurons are less excitable than myelinated ones while at early stages of remyelination these neurons seem to be hyperexcitable. The latter is a transitory condition that, very likely, leads to impaired neuronal networ...
متن کاملEvaluation of Chronotropic Properties of Mouse Embryonic Stem Cells-Derived Cardiomyocytes After Fibroblast Growth Factor Treatment
Purpose: We investigated the effect of (bFGF) (basic-Fibroblast Growth Factor) on the differentiation of divided cardiomyocytes from mouse embryonic stem cells (ES) and their pharmacological properties. Materials and Methods: The mouse embryonic stem cells (Royan B1) were cultured as 800 cells per 20µl of a hanging drop. After two days, ES cells in each drop aggregated to form embryoid bodies ...
متن کاملThe Effect of Cardio Gel and Matrigel on the Ultrastructure of Cardiomyocytes Derived From Mouse Embryonic Stem Cells
Purpose: To investigate the effect of cardiogel and matrigel on the ultrastructure of embryonic stem cell-derived cardiomyocytes. ECM: Extracellular Matrix derived from cardiac fibroblasts (cardiogel), commercial extracellular matrix (matrigel) and control group (without ECM) were cultured for up to 21 days. Ultrastructural properties of cardiomyocytes were evaluated by transmitting electron mi...
متن کاملComparison of BAX and Bcl-2 Expression During Human Embryonic Stem Cell Differentiation into Cardiomyocytes and Doxorubicin-induced Apoptosis
Back ground: Although the cell differentiation is an inseparable part of development in multicellular organisms, the regulating molecular pathway of it still is not fully defined. In the other hand, apoptosis is a fundamental physiological process which plays an essential role in a variety of biological events during development. Moreover, recent studies have found that apoptosis shows several ...
متن کاملGenetically Engineered Mouse Embryonic Stem Cell – derived Cardiomyocytes as a Suitable Model on Drugs Toxicity In vitro
Background DOX is a powerful chemotherapeutic agent used in the treatment of solid tumors and malignant hematological diseases. However, its cardiac toxicity limits the clinical usefulness of this drug. Previous reports have shown Corticosteroids induce a cytoprotective effect on cardiomyocytes. Mouse transgenic embryonic stem cell-derived pure cardiomyocytes may be considered as a model for a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Chinese journal of physiology
دوره 57 4 شماره
صفحات -
تاریخ انتشار 2014